Đề tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Đề tham khảo 12 (Có đáp án) - Phòng giáo dục và đào tạo Việt Trì
Bạn đang xem tài liệu "Đề tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Đề tham khảo 12 (Có đáp án) - Phòng giáo dục và đào tạo Việt Trì", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2022_2023_de.pdf
Nội dung text: Đề tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Đề tham khảo 12 (Có đáp án) - Phòng giáo dục và đào tạo Việt Trì
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT VIỆT TRÌ NĂM HỌC 2022-2023 Môn: Toán ĐỀ THAM KHẢO 12 Thời gian làm bài: 120 phút, không kể thời gian giao đề Đề thi có 02 trang PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (2,5 điểm) 3x 2 y 1 m Câu 1. Hệ phương trình vô nghiệm khi 3mx y 23 1 1 1 A. m B. m C. m D. m 1. 2 2 2 Câu 2. Tìm tất cả các giá trị của tham số m để hàm số y 11 3 m x 2 m đồng biến trên . 13 11 11 3 A. m B. m C. m D. m 3 3 3 2 Câu 3. Trên parabol 2 lấy hai điểm với Giá trị của biểu y2 x A x1; 32 , B x 2 ; 32 x1 x 2. 3 2 thức T bằng x1 x 2 A. 1 B. 3 C. 7 D. 5 4 4 4 4 Câu 4. Từ điểm M ngoài đường tròn O;5 cm vẽ hai tiếp tuyến MA, MB (AB, là các tiếp điểm), biết MO 13 cm . Độ dài dây AB bằng 60 65 120 120 A. cm. B. cm. C. cm. D. m. 13 12 13 13 Câu 5. Tìm tất cả các giá trị của m để phương trình 11x2 2 x 3 m 1 0 có hai nghiệm trái dấu. 1 1 1 1 A. m B. m C. m D. m 3 3 3 3 Câu 6. Cho tam giác ABC vuông tại A, đường cao AH. Khẳng định đúng là AB AH HC HC A. sinC B. cosC C. tanC D. cotC AC AC AB HA 0 0 2 Câu 7. Cho 0 90 và cos . Khi đó cot bằng 5 A. 1 B. 2 C. 3 D. 4 21 21 21 21 Câu 8. Gọi là các nghiệm của phương trình 2 Giá trị của biểu thức x1, x 2 x2 x 11 0. 2 2 bằng S x1 x 2 x 2 x 12 x 1 2 x 2 A. 22. B. 26 . C. 22 . D. 26. Câu 9. Đường thẳng d : y 2 x 5 cắt hai trục Ox, Oy lần lượt tại hai điểm AB,. Diện tích OAB bằng A. 25 B. 25 C. 25 D. 25 2 8 4 16 Trang 1
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT VIỆT TRÌ NĂM HỌC 2022-2023 HƯỚNG DẪN CHẤM ĐỀ THAM KHẢO 12 MÔN: TOÁN PHẦN I. TRẮC NGHIỆM KHÁCH QUAN (2,5 điểm) Câu 1 2 3 4 5 6 7 8 9 `10 Đáp án A C D C B D B B C C PHẦN II. TỰ LUẬN (7,5 điểm) Nội dung Điểm 3x 9 x 3 1 1 1 Câu 1 (1,5 điểm). Cho biểu thức P 2 : . x x2 1 x x 2 x 1 a) Rút gọn biểu thức P. Tính giá trị của P khi x 4 2 3. 1 b) Tìm số tự nhiên x sao cho có giá trị là số nguyên. P x 0 a) ĐKXĐ: 0,25 . x 1 Khi đó 3x 9 x 3 1 1 1 P 2 : x x2 1 x x 2 x 1 0,25 3x 9 x 3 x 2 x 1 2 x x 2 . x 1 x1 x 2 x 1 x 2 x 1 x 2 x 1 x 2 3x 9 x 3 x 2 x 1 2 x 2 x 4 x1 x 1 x 1 x 2 2 0,25 x 3 x 2 x2 . x 1 2 x1 x 1 x 2 x 2 2 2 Ta có x 4 2 3 3 1 thỏa mãn ĐKXĐ x 3 1 3 1 0,25 2 Do đó P 3 1 1 3. 1 1 b) Ta có . P 2 x 1 0,25 2 Mặt khác 1 x1 1, x 0 02 1. x 1 Trang 3
- a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. AB2 b) Chứng minh rằng OD. BC 2 c) Giả sử đường thẳng đi qua E , vuông góc với AB cắt AC, BD lần lượt tại FG,. Gọi I là trung điểm AE. Chứng minh rằng trực tâm tam giác GIF là một điểm cố định. D F C E A O I B K G a) Vì DA, DC là các tiếp tuyến của O nên 0,25 0 DAO 90 0,25 0 DCO 90 0 0,25 DAO DCO 180 Do đó ADCO là tứ giác nội tiếp đpcm 0,25 b) Chỉ ra ADO CAB 0,25 Xét ABC và DOA có: ACB DAO 900 , ADO CAB (theo CMT) 0,25 Do đó ABC DOA (g-g) BC AB 1 AO DO 0,25 Mà AB OB 2 AB2 Từ 1 , 2 OD . BC đpcm 0,25 2 c) Gọi K IG BF 0,25 Chỉ ra được FG//,// AD CB OD + Theo hệ quả ĐL Ta-let ta có EF EC EB2 EB 2 EG 0,25 EF2 EG AD CD BO AB AD Suy ra 2EF . EG EF2 EC 2 ( ECF cân tại E ) 0,25 Trang 5
- - Khuyến khích những bài làm sáng tạo, thể hiện quan điểm của học sinh (mở), cách diễn đạt khác mà vẫn đảm bảo nội dung theo yêu cầu./. Trang 7