Các dạng toán và phương pháp giải toán Đại số 6 - Nguyễn Chí Thành

docx 105 trang Hòa Bình 13/07/2023 2080
Bạn đang xem 20 trang mẫu của tài liệu "Các dạng toán và phương pháp giải toán Đại số 6 - Nguyễn Chí Thành", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxcac_dang_toan_va_phuong_phap_giai_toan_dai_so_6_nguyen_chi_t.docx

Nội dung text: Các dạng toán và phương pháp giải toán Đại số 6 - Nguyễn Chí Thành

  1. Các dạng toán và phương pháp giải toán Đại số 6 CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI TOÁN LỚP 6 TẬP HỢP, PHẦN TỬ CỦA TẬP HỢP I. LÍ THUYẾT 1. Tập hợp. Phần tử của tập hợp: - Tập hợp là một khái niệm cơ bản. Ta hiểu tập hợp thông qua các ví dụ. - Tên tập hợp được đặt bằng chữ cái in hoa. - Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, cách nhau bởi dấu ";" (nếu có phần tử là số) hoặc dấu ",". Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. - Kí hiệu: 1 A đọc là 1 thuộc A hoặc 1 là phần tử của A; 5 A đọc là 5 không thuộc A hoặc 5 không là phần tử của A; - Để viết một tập hợp, thường có hai cách: + Liệt kê các phần tử của tập hợp. + Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó. - Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử, cũng có thể không có phần tử nào (tức tập hợp rỗng, kí hiệu  . - Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. Kí hiệu: A  B đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. - Mỗi tập hợp đều là tập hợp con của chính nó. Quy ước: tập hợp rỗng là tập hợp con của mọi tập hợp. - Giao của hai tập hợp (kí hiệu: ) là một tập hợp gồm các phần tử chung của hai tập hợp đó. 2. Tập hợp các số tự nhiên: Kí hiệu N - Mỗi số tự nhiên được biểu diễn bởi một điểm trên tia số. Điểm biểu diễn số tự nhiên a trên tia số gọi là điểm a. - Tập hợp các số tự nhiên khác 0 được kí hiệu là N*. - Thứ tự trong tập hợp số tự nhiên: + Trong hai số tự nhiên khác nhau, có một số nhỏ hơn số kia. Trên hai điểm trên tia số, điểm ở bên trái biểu diễn số nhỏ hơn. + Nếu a < b và b < c thì a < c. + Mỗi số tự nhiên có một số liền sau duy nhất, chẳng hạn số tự nhiên liền sau số 2 là số 3; số liền trước số 3 là số 2; số 2 và số 3 là hai số tự nhiên liên tiếp. Hai số tự nhiên liên tiếp thì hơn kém nhau một đơn vị. + Số 0 là số tự nhiên nhỏ nhất. Không có số tự nhiên lớn nhất. + Tập hợp các số tự nhiên có vô số phần tử. 3. Ghi số tự nhiên: Có nhiều cách ghi số khác nhau: - Cách ghi số trong hệ thập phân: Để ghi các số tự nhiên ta dùng 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Cứ 10 đơn vị ở một hàng thì làm thành một đơn vị ở hàng liền trước nó.
  2. Các dạng toán và phương pháp giải toán Đại số 6 Sử dụng biểu đồ ven. Đó là một đường cong khép kín, không tự cắt, mỗi phần tử của tập hợp được biểu diễn bởi một điểm ở bên trong đường cong đó. Ví dụ: Minh họa tập hợp sau bằng hình vẽ A=={x ∈ | 5 ≤ ≤ 8 }. Giải: 5 6 8 A 7 Dạng 4: Tìm số liền sau, số liền trước của một số tự nhiên cho trước Phương pháp giải -Để tìm số liền sau của số tự nhiên a, ta tính a+1 -Để tìm số liền trước của số tự nhiên a khác 0, ta tính a-1 Chú ý: -Số 0 không có số liền trước. -Hai số tự nhiên liên tiếp thì hơn kém nhau 1 đơn vị. Ví dụ: Tìm số liền sau và liền trước của các số sau: 1009; 2n; 3n+4; 2n-2. Giải: Số Số liền trước Số liền sau 1009 1008 1010 2n 2n-1 2n+1 3n+4 3n+3 3n+5 2n-2 2n-3 2n-1 Dạng 5: Tìm các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải Liệt kê tất cả các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho. Ví dụ: Tìm x N : sao cho x là số chẵn và 12<x<20. Giải: Gọi tập hợp các số cần tìm là A: A=={14;16;18 } Dạng 6: Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước Phương pháp giải -Liệt kê các số tự nhiên thỏa mãn đồng thời các điều kiện đã cho -Biểu diễn các số vừa liệt kê trên tia số Ví dụ: Viết tập hợp A các số tự nhiên không vượt quá 6 bằng 2 cách, biểu diễn trên tia số các phần tử của tập hợp A. Giải: Cách 1: A={x ∈ | 0 ≤ ≤ 6 } Cách 2: A=={0;1;2;3;4;5;6 } Biểu diễn trên tia số: Tập hợp A :
  3. Các dạng toán và phương pháp giải toán Đại số 6 Số cuối ― Số đầu Số các chữ số = Khoảng cách +1 Ví dụ: Có bao nhiêu số có 5 chữ số: Giải: Số lớn nhất có 5 chữ số là : 99999 Số nhỏ nhất có 5 chữ số là: 10000 Số các số có 5 chữ số là : (99999-10000)+1=90000 Ví dụ: Có bao nhiêu số chẵn có 3 chữ số: Giải: Số chẵn lớn nhất có 3 chữ số là 998. Số chẵn nhỏ nhất có 3 chữ số là 100. Hai số chẵn cách nhau 2 đơn vị nên số các số chẵn có 3 chữ số là: 998 ― 100 + 1 = 450 số 2 Dạng 10: Sử dụng công thức đếm số các số tự nhiên Phương pháp giải Để đếm các số tự nhiên từ a đến b, hai số liên tiếp cách nhau d đơn vị. ta dùng công thức sau: b a Số cuối ― Số đầu +1 nghĩa là +1 d Khoảng cách Ví dụ: Muốn viết các số từ 100 đến 999 dùng bao nhiêu chữ số 9: Các số chứa các chữ số 9 ở hàng đơn vị là: 109, 119, 999 có các số cách nhau 10 đơn vị nên có 999 ― 109 =90 chữ số 9. 10 +1 Các số chứa số 9 ở hàng trăm là :190, 191 199; 290, 291 .299; 990, 991 999 có: 10.9=90 chữ số 9. 999 ― 900 Các số chứa chữ số 9 ở hàng trăm: 900, 901 .999 có: +1=100 chữ số 9. 1 Vậy có tất cả 90+90+100=280 chữ số 9 Dạng 11: Đọc và viết các số bằng chữ số la mã Phương pháp giải Cách viết: Sử dụng quy ước ghi số La Mã. I: 1 V: 5 X: 10 L: 50 C: 100 D:500 M:1000 * Thông thường người ta quy định các chữ số I, X, C, M, không được lặp lại quá ba lần ; các chữ số V, L, D không được lặp lại quá một lần (nghĩa là không lặp lại) * Chữ số cơ bản được lặp lại 2 hoặc 3 lần biểu thị giá trị gấp 2 hoặc gấp 3. Ví dụ: + I = 1 ; II = 2 ; III = 3
  4. Các dạng toán và phương pháp giải toán Đại số 6 : Đọc là một triệu : Bố nghìn Đối với những số rất lớn thường không có dạng thống nhất, mặc dù đôi khi hai gạch trên hay một gạch dưới được sử dụng để chỉ phép nhân cho 1.000.000. Điều này có nghĩa là X gạch dưới (X) là mười triệu. Số La Mã không có số 0 VD: đọc các số La Mã sau: XIV; XXVI. Viết các số La Mã: 17; 25 SỐ PHẦN TỬ CỦA TẬP HỢP, TẬP CON Dạng 1: Tìm số phần tử của một tập hợp cho trước Phương pháp giải -Căn cứ vào các phần tử đã được liệt kê hoặc căn cứ vào tính chất đặc trưng cho các phần tử của tập hợp cho trước, ta có thể tìm được số phần tử của tập hợp đó. - Sử dụng các công thức sau: Tập hợp các số tự nhiên từ a đến b có: b – a + 1 phần tử (1) Tập hợp các số chẵn từ số chẵn a đến số chẵn b có: (b – a) : 2 + 1 phần tử ( 2) Tập hợp các số lẻ từ số lẻ m đến số lẻ n có: (n-m): 2 + 1 phần tử ( 3) Tập hợp các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, có: (b-a): d +1 phần tử ( Các công thức (1), (2), (3) là các trường hợp riêng của công thức (4) ) . Chú ý: ự khác nhau giữa các tập sau:  , {0}, { } Ví dụ: Tìm số phần tử các tập hợp sau: x+1=3; A={1, 3, 5, 99} x.0=0; B={1, 4, 7, 301} Giải: x+1=3 => x=2 nên tập hợp có 1 phần tử. x.0=0 với mọi giá trị x nên tập hợp có vô số phần tử. 99 ― 1 A={1, 3, 5, 99} có số phần tử là: phần tử. 2 +1 = 50 301 ― 1 B={1, 4, 7, 301} có số phần tử là: phần tử. 3 +1 = 101 Dạng 2: Viết tất cả các tập hợp con của tập cho trước Phương pháp giải Giả sử tập hợp A có n phần tử. Ta viết lần lượt các tập hợp con: Không có phần tử nào (  ); Có 1 phần tử; Có 2 phần tử; . . . Có n phần tử.
  5. Các dạng toán và phương pháp giải toán Đại số 6 1 A; 3 A ; 3 B; B A Bài 7: Cho các tập hợp A x N / 9 x 99 ; B x N * / x 100 Hãy điền dấu  hay  vào các ô dưới đây N N* ; A B Bài 8: Gọi A là tập hợp các số tự nhiên có 3 chữ số. Hỏi tập hợp A có bao nhiêu phần tử? Bài 9: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Bài 10: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Bài 11:Cho hai tập hợp M = {0,2,4, ,96,98,100;102;104;106}; Q = { x N* | x là số chẵn ,x<106}; a) Mỗi tập hợp có bao nhiêu phần tử? b)Dùng kí hiệu  để thực hiên mối quan hệ giữa M và Q. Bài 12:Cho hai tập hợp R={a N | 75 ≤ a ≤ 85}; S={b N | 75 ≤b ≤ 91}; a) Viết các tập hợp trên; b) Mỗi tập hợp có bao nhiêu phần tử; c) Dùng kí hiệu  để thực hiên mối quan hệ giữa hai tập hợp đó. Bài 13: Hãy tính số phần tử của các tập hợp sau: a/ Tập hợp A các số tự nhiên lẻ có 3 chữ số. b/ Tập hợp B các số 2, 5, 8, 11, , 296, 299, 302 c/ Tập hợp C các số 7, 11, 15, 19, , 275 , 279 Hướng dẫn a/ Tập hợp A có (999 – 101):2 +1 = 450 phần tử. b/ Tập hợp B có (302 – 2 ): 3 + 1 = 101 phần tử. c/ Tập hợp C có (279 – 7 ):4 + 1 = 69 phần tử. Cho HS phát biểu tổng quát: - Tập hợp các số chẵn từ số chẵn a đến số chẵn b có (b – a) : 2 + 1 phần tử. - Tập hợp các số lẻ từ số lẻ m đến số lẻ n có (n – m) : 2 + 1 phần tử. - Tập hợp các số từ số c đến số d là dãy số các đều, khoảng cách giữa hai số liên tiếp của dãy là 3 có (d – c ): 3 + 1 phần tử. Bài 14: Cha mua cho em một quyển số tay dày 145 trang. Để tiện theo dõi em đánh số trang từ 1 đến 256. Hỏi em đã phải viết bao nhiêu chữ số để đánh hết cuốn sổ tay? Hướng dẫn: - Từ trang 1 đến trang 9, viết 9 chữsố. - Từ trang 10 đến trang 99 có 90 trang, viết 90 . 2 = 180 chữ số.
  6. Các dạng toán và phương pháp giải toán Đại số 6 d) Tập hợp D các số tự nhiên x , x N* mà 0:x = 0; Bài 21: Tính số điểm về môn toán trong học kì I . lớp 6A có 40 học sinh đạt ít nhất một điểm 10 ; có 27 học sinh đạt ít nhất hai điểm 10 ; có 29 học sinh đạt ít nhất ba điểm 10 ; có 14 học sinh đạt ít nhất bốn điểm 10 và không có học sinh nào đạt được năm điểm 10. dung kí hiệu  để thực hiên mối quan hệ giữa các tập hợp học sinh đạt số các điểm 10 của lớp 6A , rồi tính tổng số điểm 10 của lớp đó. Bài 22:Bạn Thanh đánh số trang của một cuốn sách bằng các số tự nhiên từ 1 đến359 .hỏi bạn nam phải viết tất cả bao nhiêu chữ số? Bài 23: Để đánh số trang một quyển sách từ trang 1 đến trang cuối người ta đã dùng hết tất cả 834 chữ số. Hỏi a. Quyển sách có tất cả bao nhiêu trang? b. Chữ số thứ 756 là chữ số mấy? Bài 24. Viết các tập hợp sau rồi tìm số phần tử của tập hợp đó. a) Tập hợp A các số tự nhiên x mà 8:x =2. b) Tập hợp B các số tự nhiên x mà x+3<5. c) Tập hợp C các số tự nhiên x mà x-2=x+2. d)Tập hợp D các số tự nhiên mà x+0=x Bài 25. Cho tập hợp A = { a,b,c,d} a) Viết các tập hợp con của A có một phần tử. b) Viết các tập hợp con của A có hai phần tử. c) Có bao nhiêu tập hợp con của A có ba phần tử? có bốn phần tử? d) Tập hợp A có bao nhiêu tập hợp con? Bài 26. Xét xem tập hợp A có là tập hợp con của tập hợp B không trong các trờng hợp sau. a, A={1;3;5}, B = { 1;3;7} b, A= {x,y}, B = {x,y,z} c, A là tập hợp các số tự nhiên có tận cùng bằng 0, B là tập hợp các số tự nhiên chẵn. Bài 27. Ta gọi A là tập con thực sự của B nếu A  B ;A B . Hãy viết các tập con thực sự của tập hợp B = {1;2;3}. Bài 28. Cho tập hợp A = {1;2;3;4} và B = {3;4;5}. Hãy viết các tập hợp vừa là tập con của A, vừa là tập con của B. Bài 29. Chứng minh rằng nếu A  B, B  C thì A  C Bài 30. Có kết luận gì về hai tập hợp A,B nếu biết. a, x B thì x A b, x A thì x B ,x B thì x A . Bài 31. Cho H là tập hợp ba số lẽ đàu tiên, K là tập hợp 6 số tự nhiên đầu tiên. a, Viết các phần tử thuộc K mà không thuộc H. b,CMR H  K c, Tập hợp M với H  M , M  K . - Hỏi M có ít nhất bao nhiêu phần tử? nhiều nhất bao nhiêu phần tử? - Có bao nhiêu tập hợp M có 4 phần tử thỏa mãn điều kiện trên? Bài 32. Cho a 18;12;81,b 5;9 . Hãy xác định tập hợp M = {a-b}.
  7. Các dạng toán và phương pháp giải toán Đại số 6 c) 1+3+5+7+ +(2.n +1) d) 1+4+7+10+ +2005 e) 2+5+8+ +2006 f) 1+5+9+ +2001 Bài 10 Tính nhanh tổng sau. A = 1 +2 +4 +8 +16 + 8192 Bài 11 a) Tính tổng các số lẻ có hai chữ số b) Tính tổng các số chẵn có hai chữ số. Bài 12. a) Tổng 1+ 2+ 3+ 4 + + n có bao nhiêu số hạng để kết quả bằng 190 b) Có hay không số tự nhiên n sao cho 1 + 2+ 3+ 4 + + n = 2004 Bài 13. Tính giá trị của biểu thức. a) A = (100 - 1).(100 - 2).(100 - 3) (100 - n) với n N * và tích trên có đúng 100 thừa số. b) B = 13a + 19b + 4a - 2b vớ a + b = 100. Bài 14.Tìm các chữ số a, b, c, d biết a.bcd.abc abcabc Bài 15. Chứng tỏ rằng hiệu sau có thể viết được thành một tích của hai thừa số bằng nhau: 11111111 - 2222. Bài 16. Hai số tự nhiên a và b chia cho m có cùng số d, a b. Chứng tỏ rằng a - b : m Bài 17. Chia 129 cho một số ta được số dư là 10. Chia 61 cho số đó ta được số dư là 10. Tìm số chia. Bài 18. Cho S = 7 + 10 + 13 + + 97 + 100 a) Tổng trên có bao nhiêu số hạng? b) Tìm số hạng thứ 22 c) Tính S. Bai 19. Chứng minh rằng mỗi số sau có thể viết được thành một tích của hai số tự nhiên liên tiếp: a) 111222 ; b) 444222 Bài 20 . Tìm số chia và số bị chia, biết rằng: Thương bằng 6, số dư bằng 49, tổng của số bị chia,số chia và dư bằng 595. Bài 21. Tính bằng cách hợp lý. 44.66 34.41 1 2 3 200 a) A b) B 3 7 11 79 6 8 10 34 1.5.6 2.10.12 4.20.24 9.45.54 c) C 1.3.5 2.6.10 4.12.20 9.27.45 Bài 22. Tìm kết quả của phép nhân. a) A 3 3 3.9 9 9 b) B 3 3 3.3 3 3 2005c.s 2005c.s 2005c.s 2005c.s Bài 23.Tìm giá trị nhỏ nhất của b. thức A = 2009 - 1005:(999 - x)với x N PHÉP CỘNG, PHÉP TRỪ, PHÉP NHÂN VÀ PHÉP CHIA Dạng 1 : Áp dụng để tính nhanh Phương pháp giải - Quan sát, phát hiện các đặc điểm của các số hạng, các thừa số.
  8. Các dạng toán và phương pháp giải toán Đại số 6 1367+5472=1060+307+5070+402=(1060+402)+(5070+307) b) 2003.2003 và 2002.2004 2003.2003=2003(2002+1)= 2002.2004=2002(2003+1)= Dạng 7: Bài tập về phép chia có dư Phương pháp giải Sử dụng định nghĩa của phép chia có dư và công thức: a = b.q + r (0 29(q - p) = 2p + 23 Vì 2p + 23 lẻ nên( q - p) lẻ => q - p 1. (0,75đ) Vì a nhỏ nhất hay q - p = 1 => p = 3; => a = 121 (0,5đ) Vậy số cần tìm là 121 (0,25đ) Ví dụ: Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất. a 120.q1 58 9a 1080q1 522 Ta có (q1, q2 N ) a 135.q2 88 8a 1080.q2 704 Từ ( 2 ) , ta có 9 . a = 1080 . q2 + 704 + a ( 3 ) Kết hợp ( 1 ) với ( 2 ) , ta được a = 1080 . q – 180 Vì a nhỏ nhất, cho nên, q phải nhỏ nhất => q = 1 => a = 898 BÀI TẬP: Tính nhanh: Bài 1: Tính tổng sau đây một cách hợp lý nhất. a/ 67 + 135 + 33 b/ 277 + 113 + 323 + 87 ĐS: a/ 235 b/ 800 Bài 2: Tính nhanh các phép tính sau: a/ 8 x 17 x 125 b/ 4 x 37 x 25 ĐS: a/ 17000 b/ 3700 Bài 3: Tính nhanh một cách hợp lí: a/ 997 + 86 b/ 37. 38 + 62. 37 c/ 43. 11; 67. 101; 423. 1001 d/ 67. 99; 998. 34 Hướng dẫn a/ 997 + (3 + 83) = (997 + 3) + 83 = 1000 + 80 = 1083
  9. Các dạng toán và phương pháp giải toán Đại số 6 Các số đặt trong hình vuông có tính chất rất đặc biệt. đó là tổng các số theo hàng, cột hay đường chéo đều bằng nhau. Một bảng ba dòng ba cột có tính chất như vậy gọi là ma phương cấp 3 (hình vuông kỳ diệu) Bài 6: Điền vào các ô còn lại để được một ma phương cấp 3 có tổng các số theo hàng, theo cột bằng 42. Hướng dẫn: 15 10 17 15 10 16 14 12 12 11 18 13 Bài 7: Điền các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng có 3 dòng 3 cột để được một ma phương cấp 3? 1 4 9 2 4 2 3 5 7 7 5 3 8 6 8 1 6 9 Hướng dẫn: Ta vẽ hình 3 x 3 = 9 và đặt thêm 4o ô phụ vào giữa các cạnh hình vuông và ghi lại lần lượt các số vào các ô như hình bên trái. Sau đó chuyển mỗi số ở ô phụ vào hình vuông qua tâm hình vuông như hình bên phải. Bài 8: Cho bảng sau 8 9 24 36 12 4 6 16 18 Ta có một ma phương cấp 3 đối với phép nhân. Hãy điền tiếp vào các ô trống còn lại để có ma phương? ĐS: a = 16, b = 20, c = 4, d = 8, e = 25 10 a 50 100 b c d e 40 LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN A. Kiến thức cơ bản: + an a.a a ( n thừa số a, n o ) + Quy ước: a1 = a, a0 = 1. + am.an = am+n (m, n N*); am:an =am-n (m, n N*, m n, a 0); Nâng cao: + Luỹ thừa của một tích: (a.b)n = am.bn
  10. Các dạng toán và phương pháp giải toán Đại số 6 VD: Tìm x biết 3x=27; x3=125; 16 = (x -1)4; 4x = 2x+1; Dạng 6: Viết một số tự nhiên dưới dạng tổng các lũy thừa của 10. Phương pháp giải Viết số tự nhiên đã cho thành tổng theo từng hàng (hàng đơn vị, hàng chục, hàng trăm ). Chú ý rằng 1=100. Ví dụ : 2386 = 2.1000 + 3.100 + 8.10 + 6.1 =2.103 +3.102 + 8.10 + 6.100. (Để ý rằng 2.103 là tổng hai lũy của 10 vì 2.10 3 = 103 + 103; cũng vậy đối với các số 3.10 2, 8.10, 6.100 ). Dạng 7: So sánh hai lũy thừa - Đưa về cùng số mũ rồi so sánh cơ số. - Đưa về cùng cơ số rồi so sánh số mũ. - So sánh với lũy thừa chung gian; VD: 3111 và 1714 Bài giải: Ta thấy 3111 1614 = (24 )14 = 256 (2) Từ (1) và (2) 311 < 255 < 256 < 1714 nên 3111 < 1714 Chú ý với cơ số nhỏ hơn 1. Dạng 8: Tính tổng biểu thức lũy thừa, chứng minh A chia hết cho 1 số: PP: Tính A.n; A.n-A - Để chứng minh chia hết ta có thể tính ra rồi dung chữ số tận cùng hoặc nhóm các thừa số với nhau để xuất hiện số chia - Chú ý: an-bn chia hết (a-b); an+bn chia hết (a+b): VD: 11n+2+122n+1 chia hết 133; Dạng 9: Tìm GTLN; GTNN của một biểu thức lũy thừa PP: - Để làm dạng toán này, các em cần chú ý đến biểu thức lũy thừa âm hay dương. - Lập luận rồi tìm ra GTLN, GTNN VD: (x-2)2 +3(y+1)2 -2016 Ta có : (x-2)2 ≥ 0; 3(y+1)2 ≥ 0 nên (x-2)2 +3(y+1)2 -2016 ≥ -2016. Vậy GTNN: -2016 khi (x-2)2 = 0; 3(y+1)2 = 0, suy ra x=2; y=-1. VD: -(x-2)2 -(y+1)2 +2016 Ta có : -(x-2)2 ≤ 0; -(y+1)2 ≤ 0 nên -(x-2)2 -(y+1)2 +2016 ≤ 2016. Vậy GTLN: 2016 khi -(x-2)2 = 0; -(y+1)2 = 0, suy ra x=2; y=-1. Chú ý: GTNN,GTLN luôn là số hạng tự do của biểu thức. Dạng 10: Tìm chữ số tận cùng của một lũy thừa: Dạng toán này cụ thể bên dưới.
  11. Các dạng toán và phương pháp giải toán Đại số 6 Bài 12: a) Viết các tổng sau thành một tích: 2+22; 2+22+23 ; 2+22+23 +24 b) Chứng minh rằng: A = 2 + 22 + 23 + 24 + +22004 chia hết cho 3;7 và 15 Bài 13: a) Viết tổng sau thành một tích 34 +325 +36+ 37 b) Chứng minh rằng: + B = 1 + 3 + +32 +32 + + 399  40 + A = 2 + 22 + 23 + 24 + +2100  31 + C = 165 + 215  33 + D = 53! - 51!  29 Bài 14: Thực hiện các phép tính sau một cách hợp lý: a) (217+172).(915 - 159)(42- 24) b) (71997- 71995):(71994.7) c) (12 23 34 45 ).(13 23 33 43 ).(38 812 ) d) (28 83 ) : (25.23 ) Bài 15: Tìm x N biết a) x10 = 1x b) x10 = x c) (2x -15)5 = ( 2x -15)3 d) x2<5 Bài 16: Tìm x N biết a) 13 + 23 + 33 + + 103 = ( x +1)2 b) 1 + 3 + 5 + + 99 = (x -2)2 Bài 17: Tìm 1 cặp x ; y N thoả mãn 73 = x2 - y2 Ta thấy: 73 = x2 - y2 ( 13 + 23 + 33 + +73) - (13+ 23+ 33+ + 63) = x2 - y2 (1+ 2 + 3 + + 7)2 - (1 + 2 + 3 + + 6)2 = x2 - y2 282 - 212 = x2 - y2 Vậy 1 cặp x; y thoả mãn là: x = 28; y = 21 Bài 18: Tìm x ; y N* biết. x2 = 1 ! + 2 ! + 3 ! + + y! Bài giải: Ta thấy x2 là một số chính phương Có chữ số tận cùng là 1 trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9 Mà: + Nếu y = 1 Ta có x = 1 ! = 12 ( TM) + Nếu y = 2 Ta có: x2 = 1 ! + 2! = 3 ( Loại) + Nếu y = 3 Ta có: x2 = 1 ! + 2 ! + 3 ! = 9 = 32 ( TM) x = 3 + Nếu y = 4 Ta có: x2 = 1 ! + 2 ! + 3 ! + 4 ! = 33 ( loại ) + Nếu y 5 Ta có: x2 = ( 1 ! + 2 ! + 3 ! + 4 ! ) + ( 5! + 6! + y! ) = 3 + 0 = 3 ( loại) Vậy x = 1 và y = 1 x = 3 và y = 3
  12. Các dạng toán và phương pháp giải toán Đại số 6 HD 1930 5 19.(1930 5) 1931 95 90 A = Nên 19A = = = 1 + 1931 5 1931 5 1931 5 1931 5 1931 5 19.(1931 5) 1932 95 90 B = Nên 19B = = = 1 + 1932 5 1932 5 1932 5 1932 5 90 90 90 90 V× > Suy ra 1 + > 1 + 1931 5 1932 5 1931 5 1932 5 Hay 19A > 19B Nªn A > B 218 3 b) A = 2 20 3 2 2.(218 3) 2 20 12 9 Nên 22 . A = = = 1 - 2 22 3 2 20 3 2 20 3 2 20 3 B = 2 22 3 2 2.(2 20 3) 2 22 12 9 Nên 22.B = = = 1- 2 22 3 2 22 3 2 22 3 9 9 KL: > 2 20 3 2 22 3 9 9 Suy ra 1 - 5 > 4 > + 3 =B 1 5 5 2 58 1 3 32 38 Nên A > B Bài 1: Tìm chữ số tận cùng của các tích sau a) 312.352 b) 162.1252 c) 2002.722 d) 1212.3162